Φίλοι αριθμοί




Κατά τον Ιάμβλιχο  δύο αριθμοί λέγονται φίλοι όταν το άθροισμα όλων των πηλίκων του πρώτου ισούται με τον δεύτερον αριθμό και το άθροισμα όλων των πηλίκων του δεύτερου ισούται με τον πρώτον αριθμό. Οι δύο αριθμοί π.χ. 220 και 284 είναι φίλοι αριθμοί, διότι:

220 : 220 =   1                                  284 : 284 =   1
220 : 110 =   2                                  284 : 142 =   2
220 :  55 =   4                                   284 :  71 =   4
220 :  44 =   5                                   284 :   4 =  71
220 :  22 =  10                                  284 :   1 = 142
220 :  20 =  11                                         ------
220 :  11 =  20                                   Άθροισμα 220
220 :  10 =  22                                                            
220 :   5 =  44
220 :   4 =  55
220 :   2 = 110
         ------
   Άθροισμα 284
Διαβάστε Περισσότερα »

Τέλειοι αριθμοί



Τέλειος λέγεται ένας ακέραιος αριθμός όταν το άθροισμα των θετικών διαιρετών του, εκτός του αριθμού, είναι ίσο τον αριθμό δηλ. ο n είναι τέλειoς αν και μόνο αν σ(n) = 2n.
Ο μικρότερος τέλειος αριθμός είναι ο 6. Oι διαιρέτες του 6 είναι οι 1, 2, 3 και το άθροισμα αυτών είναι ίσο με 6 (1+2+3=6). Άλλοι τέλειοι αριθμοί είναι οι 28 = 1 + 2 + 4 + 7 + 14, 496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 και ο 8128. Αυτοί είναι και οι μόνοι γνωστοί τέλειοι κατά την αρχαιότητα.
Ο επόμενος τέλειος αριθμός είναι ο 33550336 και ακολουθούν οι 8589869056, 137438691328, 2305843008139952128, 2658455991569831744654692615953842176, 191561942608236107294793378084303638130997321548169216.

Άρτιοι τέλειοι αριθμοί 

Ο Ευκλείδης ανακάλυψε ότι οι τέσσερις πρώτοι τέλειοι αριθμοί παράγονται από τον τύπο 2n−1(2n − 1):
Για n = 2:   21(22 − 1) = 6
Για n = 3:   22(23 − 1) = 28
Για n = 5:   24(25 − 1) = 496
Για n = 7:   26(27 − 1) = 8128
Παρατηρώντας ότι τα n στον παραπάνω τύπο είναι πρώτοι αριθμοί, ο Ευκλείδης απέδειξε ότι ο τύπος 2n−1(2n − 1) δίνει έναν άρτιο τέλειο αριθμό όταν το 2n − 1 είναι πρώτος.
Οι Αρχαίοι Έλληνες μαθηματικοί έκαναν και άλλες εικασίες για τους τέλειους αριθμούς από τις οποίες όμως οι περισσότερες αποδείχθηκαν λανθασμένες.
Είναι εύκολο να δειχθεί ότι αν ο  είναι πρώτος, τότε ο  είναι πρώτος, χωρίς όμως να ισχύει και το αντίστροφο. Οι πρώτοι αριθμοί της μορφής 2n − 1 είναι γνωστοί ως πρώτοι του Μερσέν (Mersenne), από το όνομα του Μαρίν Μερσέν που έζησε τον 17ο αιώνα και τους μελέτησε πρώτος.
Δύο χιλιάδες χρόνια μετά τον Ευκλείδη, ο Όιλερ (Euler) απέδειξε ότι ο τύπος 2n−1(2n − 1) μας δίνει όλους τους άρτιους τέλειους αριθμούς. Το αποτέλεσμα αυτό είναι γνωστό σαν Θεώρημα Ευκλείδη-Όιλερ.
Μέχρι σήμερα, με τη βοήθεια ηλεκτρονικών υπολογιστών, είναι γνωστοί 44 πρώτοι του Μερσέν και άρα και 44 άρτιοι τέλειοι αριθμοί. Ο μεγαλύτερος από αυτούς - ο 44ος - αποτελείται από 19.616.714 ψηφία. Δεν είναι γνωστό αν υπάρχουν άπειροι πρώτοι του Μερσέν. Το σύστημα GIMPS ασχολείται με την εύρεση πρώτων του Μερσέν.

Περιττοί τέλειοι αριθμοί 

Είναι άγνωστο αν υπάρχουν περιττοί τέλειοι αριθμοί. Υπάρχουν ωστόσο μια σειρά αποτελέσματα χωρίς όμως οι μαθηματικοί να έχουν φτάσει στην απάντηση της ερώτησης αν υπάρχουν ή όχι.
Τα μέχρι σήμερα γνωστά αποτελέσματα μας λένε ότι κάθε περιττός τέλειος αριθμός N πρέπει να είναι της μορφής 12m + 1 ή 36m + 9 και να ικανοποιεί τις ακόλουθες ιδιότητες:
N είναι της μορφής

όπου q, p1, …, pk είναι διαφορετικοί πρώτοι και q ≡ α ≡ 1 (mod 4) (Όιλερ).
Στην παραπάνω παραγοντοποίηση, ο k είναι τουλάχιστον 8, και ο k είναι τουλάχιστον 11 αν το 3 δεν διαιρεί το N (Nielsen 2006).
Στην παραπάνω παραγοντοποίηση, ένας τουλάχιστον από τους  είναι μεγαλύτερος από 1. (Steuerwald 1937)
Ο μεγαλύτερος πρώτος που διαιρεί το N είναι μεγαλύτερος από 108 (Takeshi Goto and Yasuo Ohno, 2006).
Ο δεύτερος μεγαλύτερος πρώτος που διαιρεί το N είναι μεγαλύτερος από 104 , και ο τρίτος μεγαλύτερος πρώτος είναι μεγαλύτερος από 100 (Iannucci 1999, 2000).
Ο N έχει τουλάχιστον 75 πρώτους στην παραγοντοποίησή του, υπολογίζοντας κάθε μια από τις 2ek επαναλήψεις του pk χωριστά (Kevin Hare 2005).
Ο N είναι μικρότερος από  όπου n είναι ο αριθμός των διακεκριμένων πρώτων που τον διαιρούν (οπότε n = k + 1 όπου k όπως πριν) (Nielsen 2003).
Αν ο N υπάρχει, τότε είναι μεγαλύτερος από 10500 σύμφωνα με τους υπoλογισμούς του [1] .

Πηγή: wikipedia

Y.Γ. οκ τώρα μελλοντικέ συνάδελφε :P


Διαβάστε Περισσότερα »
Related Posts Plugin for WordPress, Blogger...